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Introduction

Heavy metal pollution is a serious 
concern due to hazardous impacts 
at even very small concentrations. 
Heavy metals are non-biodegradable, 
bioaccumulate in tissues and are 
biomagnified along with the trophic 
levels.1 Weathering of geological 
bedrock and volcanic eruptions 
can discharge heavy metals into 
the surrounding environment.2 The 
type of heavy metals released from 
the rock substratum depends on its 
composition and other factors such as 
the inherent chemistry of the bedrock/
soil, climate, nature, and composition 
of the soil and other anthropogenic 
activities in the region.2,3 Subsequent 
releases and the entry of heavy metals 
into the food chain depends on their 
concentration and uptake by the 
local flora and fauna. Atmospheric 
deposition has also been reported to 
be one of the major causes of deposits 
in urban and sub-urban areas. Heavy 
metal sources can be categorized as 
shown in Figure 1.  

Heavy metal pollution occurs 
directly from industries (tannery, 

electroplating, dyeing, mining), 
agricultural fields, sewage sludge, 
and waste treatment plants. Recent 
studies have established that the 
long-term use of untreated wastewater 
from industrial sources can adversely 
affect water quality, making it unfit 
for human consumption.2 Untreated 
industrial wastewater is often colored, 
frothy, and contains hazardous 
chemicals including heavy metals, 
toxic dyes, acids, alkalis, and other 
toxic chemicals.4 The resulting 
pollution leads to hazardous impacts 
on the health of occupants/residents 
and occupational health hazards for 
workers.5 The electroplating industry 
releases hazardous wastewater laden 

with heavy metals.6 Heavy metals 
such as chromium (Cr) and nickel 
(Ni) discharged in untreated effluents 
by electroplating plants have been 
reported to surpass permissible 
limits.6-10 Heavy metals like copper 
(Cu), Cr, iron (Fe), manganese (Mn), 
and zinc (Zn) are present in tannery 
wastewater.11 Various studies have 
analyzed the quality of industrial 
wastewater and groundwater supplies 
in terms of heavy metals compared 
with standards for discharge of 
environmental pollutants (Table 1). 

Various reports have demonstrated 
that industrial wastewater contains 
heavy metals beyond permissible limits 
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for drinking water or surface/irrigation 
water. Wastewater containing heavy 
metals (above permissible levels) is 
used to irrigate fields in various parts 
of India. Application of heavy metal-
contaminated water in agricultural 
fields has led to their bioaccumulation 
in crops and associated food chains. 
Indirect heavy metal pollution 
results from contaminated surface 
or groundwater and rainwater. 
Rivers are one of the most important 
resources for fresh water and are 
severely affected by pollution 
sources.23 According to the report 
‘Status of trace and toxic metals in 
Indian rivers’, out of 414 river water 
quality stations across various rivers 
in India, 57 stations have been found 
to contain two or more heavy metals 
beyond permissible limits.24 The 
situation demands immediate action 
and remediation of contaminated 
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Figure 1 — Sources of heavy metals

Table 1 — Sources of Heavy Metal Contamination in Water



Journal of Health & Pollution Vol. 9, No. 24 — December 2019
3

Review

rivers. The chances of exposure to 
heavy metals have increased due 
to increased use in the technology, 
domestic, industrial, and agricultural 
sectors.2 Heavy metals’ effects depend 
largely upon their chemical nature. 
Inorganic arsenic (As) compounds 
are readily absorbed and interfere to a 
greater extent with cellular reactions 
compared to the organic forms due to 
their poor cellular absorption.25 Heavy 
metals have been reported to attach 
themselves to protein binding sites and 
remove the original metals, causing 
toxicity and cellular malfunctioning.26

Different exposure routes, including 
dermal (through the skin), ingestion 
(food or drink), and inhalation (as 
dust or fume) have been studied, 
along with the effects of heavy metals, 
mechanism of toxic action, impacts, 

and conventional and bioremediation 
techniques. A number of studies have 
examined various bioremediation 
techniques including algae, bacteria, 
and fungi as biosorbents. The current 
study aims to provide insight into the 
environmental occurrence and sources 
of heavy metals as published in the 
scientific literature.

Methods

The present study was conducted by 
searching databases from different 
libraries: Google Scholar, Medline and 
Scopus. Studies, irrespective of the 
place/area of research, were restricted 
to publications available in English 
and those published in the last twenty 
years. The search outcomes were 
collected, studied and thoroughly 
mined as applicable to the study 

objectives. Observations across studies 
were compared with standards for the 
discharge of heavy metals. 

A total of 301 articles or records were 
searched in various databases. Most 
of the articles were identified from 
electronic bibliographic sources. After 
the initial adjustment with duplicates 
(n = 29), 271 articles were further 
screened on the basis of title (n = 15), 
relevance (n = 15), and availability 
of full text (n = 07). Articles related 
to biosorption with biomass and 
phytoremediation were discarded (n 
= 19). The remaining articles (n = 
215) were assessed for eligibility and 
included in the study (Figure 2). 

Results

Table 2 demonstrates some of the 
toxic heavy metals, their occurrence/
applications, exposure routes and 
toxicity mechanisms.

Discussion

Rapid population growth has created 
excessive pressure on terrestrial 
and aquatic ecosystems, leading to 
increasing exploitation/extraction 
of water, food, and water resources. 
Apart from anthropogenic discharge 
of heavy metals, natural sources 
contribute significantly to heavy metal 
pollution. Their occurrence in soil 
and release due to soil weathering is 
an important source of heavy metal 
pollution. Arsenic is present in various 
igneous and sedimentary rocks in 
high concentrations. Approximately 
45,000 tons of As is reported to be 
released by coal sources.28,39 Many 
countries, including India, Pakistan, 
Australia, Canada, Nepal, and 
Japan are severely impacted by As 
occurrence.40 Arsenic contamination 
from geogenic sources has been found 
throughout West Bengal, India.39 The 
bioavailability of heavy metals and 
their effects further depend on the 
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Table 2 — Environmental Occurrence, Routes of Exposure and Toxicity Profile of Toxic Heavy Metals
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metal, its physico-chemical properties 
and lipid solubility which imparts a 
characteristic toxicological property. 
Features like age, nutritional status, 
trophic interactions and physiological 
adaptations of organisms play an 
important role in their toxicity. With 
absorption, a metal is distributed in 
body tissues and tends to persist in 
the body in organs such as bones, liver 
and kidneys for a prolonged time. 
Heavy metals have been reported to 
affect cellular fractions and organelles.2 
With increasing awareness regarding 
the persistence, nature and deleterious 
effects of heavy metals, there has been 
growing interest in the development 

of technologies to remediate this 
contamination.

Heavy metals removal through 
conventional techniques

Conventional techniques like 
adsorption, electro-dialysis, 
precipitation and ion exchange 
used to remove heavy metals have 
limitations. The process of chemical 
precipitation involves adding anions 
for precipitating metals as suspended 
particles, which are then removed. 
The process is not specific and 
cannot remove heavy metals at low 
concentrations.41 Through the ion 

exchange process, heavy metals can 
be removed to the level of parts per 
billion.42 However, it’s a non-specific, 
pH-sensitive and expensive method.43 
The method of reverse osmosis makes 
use of membranes. These conventional 
techniques have drawbacks such 
as slow and inefficient removal, 
generation of contaminated sludge 
requiring careful disposal, high cost 
and energy involved in the processes, 
and blockage of membranes.44-47 There 
is a need for a cheap and effective 
technology to remove heavy metals 
with an eco-friendly approach. There 
has been increasing interest in the use 
of biological agents for heavy metal 
removal as an alternative to these 
methods. 

Bioremediation 

Microorganisms are ubiquitously 
present in nature and play a crucial 
role in elemental biogeochemical 
cycles of metal transformations 
between soluble and insoluble species. 
Metal-microbe interactions can have 
beneficial or harmful consequences. 
Apart from the nature of the microbes 
and chemistry of metals involved, 
these transformations are dependent 
on other environmental factors like 
pH, moisture, temperature, presence of 
other ions, humic colloidal substances 
and other living organisms and their 
competitors which play an important 
part in microbial colonization and 
biofilm formation.36

Bioremediation is a technique for 
removing/converting harmful 
contaminants like heavy metals 
into less harmful substances; and/
or removing toxic elements from 
the contaminated environment; or 
degrading organic substances and 
ultimate mineralization of organic 
substances into carbon dioxide, 
water, nitrogen gas, etc., employing 
dead or alive biomass. The process 
of bioremediation can be applied 
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to soil and water media through 
in- and ex-situ techniques. A brief 
description of the different techniques 
of bioremediation for various 
contaminants is given in Figure 3. 

The in-situ process does not involve 
excavation or removal and does 
not disturb the soil structure. It 
can make use of stimulation of 
indigenous microbial flora (intrinsic) 
or introduction of microorganisms 
(engineered) bioremediation.50 The 
type and the nature of contaminants, 
degree of contamination, soil type or 
site geochemistry and geographical 
location are some factors to be 
considered for this technique.51 

Contaminants may get adsorbed 
on soil particles and become 
unavailable for bioremediation. 
During bioremediation there are 
other challenges, like microbial 
competition and death after 
inoculation, temperature, and 
moisture condition of the media.52-54 

High temperature increases the 
solubility of contaminants and hence 
their mobilization.55 In-situ treatment 
generally involves pumping oxygen/
nutrients (bioventing/biostimulation) 
into the soil. The texture also plays 
an important part during bioventing 
and biostimulation. In coarse-
textured soils, it is easier to pump 
and disperse oxygen and nutrients 
compared to fine-textured soils. Fine 
soils like clay retain moisture in their 
numerous smaller pores with high 
surface area and prevent oxygen from 
dispersing uniformly throughout 
the contaminated soil. However, this 
process may not be suitable for all 
types of soils when natural conditions 
(like temperature) become limiting. 
Higher sorption capacity by microbial 
cells compared to clay particles has 
been indicated by various reports.56 
Indigenous species isolated from 
contaminated sites has been reported 
to demonstrate exceptional resistance 
and biosorption efficiency towards 

heavy metals. Two indigenous strains, 
AK1 and AK9, belonging to the genus 
of Pseudomonas, have been isolated 
from As-contaminated water of the 
Ganga basin. The strains have been 
reported to be resistant towards As 
and other heavy metals, like silver 
(Ag), cadmium (Cd), cobalt (Co), 
Cr, Cu, mercury (Hg), Ni, and lead 
(Pb).57 Ex-situ technique involves the 
transport of contaminated soil and 
water from the contaminated area 
to another site for further treatment. 
It may be classified as a solid-phase 
technique (for land treatment), 
slurry-phase and pile techniques (for 
a mixed medium containing solid and 
liquid phases in bioreactors).58 It uses 
techniques like bioreactors, biopiles, 
and land farming. For the slurry-
phase technique, contaminated soil 
is mixed with water along with other 
additives in a bioreactor. However, the 
efficiency of the bioreactor depends 
on biosorbent (live/dead), optimal 
conditions required for microbial 
growth and adaptability of biomass to 
the configuration of the bioreactor.59

Mercury removal from synthetic 
wastewater using a bioreactor has 
been reported.60 The wastewater 
bioremediation is dependent on 
various factors like pH.42 The pH 
affects their bioavailability by 
influencing the solution chemistry 
through processes like complexation, 
hydrolysis, redox and precipitation.61 
Microbial biomass surface area 
and pretreatment processes 
(modifying the surface area) tend 
to influence the bioremediation 
process.62 Microbial biomass may 
be required to be immobilized in 
matrices like alginate and silica gel 
to develop a suitable commercial 
biosorbent with appropriate strength 
and porosity.63 Encapsulation 
imparts physicochemical stability 
and heat resistance. Encapsulated 
Agrobacterium sp. in alginate with 
nano-particles of Fe has shown an 

excellent adsorption capacity for 
continuously five cycles.64 Poor 
selectivity and difficulties in reusing 
biomass are some of the limitations 
of the process. Bioremediation has 
also been mediated through microbial 
biofilms having high resistance and 
tolerance for metal ions. Rhodotorula 
sp. have a removal efficiency of up to 
95.39%.65 

Biosorbent materials 

Selecting an efficient, highly selective 
and economical biosorbent is a 
major concern.63 The biosorbent 
should be easily available or should 
demonstrate quick growth. The 
efficiency of the biosorbent depends 
on the experimental requirements 
and pretreatment of the bioagent. 
There have been many reports on 
wastewater treatment using various 
biosorbents.66-72 Various types of 
biological agents have been employed 
for remediation in ex- and in-situ 
conditions. These include agro-
wastes like wheat/rice straw, tea/
coffee/yeast waste, cotton waste, etc. 
Microorganisms (bacteria, fungi, yeast 
or algae) sourced from their natural 
habitats can be excellent biosorbents.73 
These biosorbents can absorb heavy 
metals at very low concentrations. 
The functional groups like amide, 
amine, carbonyl, carboxyl, etc. 
facilitate the removal of heavy metals. 
Microorganisms possess characteristic 
enzymatic profiles required specifically 
for heavy metal resistance.74,75 
However, steric and conformational 
factors along with the number and 
availability of reactive sites affect the 
biosorption process. Microorganisms 
like fungi convert heavy metals into 
less toxic compounds and utilize them 
for their growth; e.g., Pleurotus sp., 
Klebsiella oxytoca, etc. display metal 
binding capacity.76,77 Cephalosporium 
aphidicola has been found to be 
effective in lead-contaminated soil.78 
Some of the most commonly used 

Kapahi, Sachdeva

Bioremediation Options for Heavy Metal Pollution



Journal of Health & Pollution Vol. 9, No. 24 — December 2019
7

Review

biosorbents are shown below in Table 3. 

Bioremediation mechanisms

Microorganisms adapt to and resist 
heavy metals in highly contaminated 
areas. Extra-cellular polymeric 
substances present on the biomass 
cell wall can attach to heavy metals 
by mechanisms like proton exchange 
or micro-precipitation of metals.80 
Biomass surfaces have a negative 
charge because of the presence of 
carboxyl, amino, phosphoryl, and 
sulfo groups as potential ion exchange 
sites and metal sinks. The process of 
bioremediation takes place through 
various mechanisms like redox 
process, adsorption, complexation, 
ion-exchange, precipitation, and 
electrostatic attraction. 

Microorganisms may initiate metal 
mobilization/immobilization by 
redox reactions; and hence, impact 
bioremediation processes. Heavy 
metals like Fe, As, Cr, and Hg 
undergo oxidation and reduction 
cycles. Bioremediation is facilitated 
by converting an element from its 
insoluble and stationary form in 
sediments into its mobile and soluble 
phase. Mobilization can also have 
deleterious impacts when toxic metal 

ions are redistributed and released from 
their solid phase from sediments into 
the solution phase.59 This increases their 
bioavailability and heavy metals can 
reach microbial metabolic systems. The 
bacteria reduces Hg(II) to the elemental 
and more volatile form of Hg(0).81 
Microbial reduction can also enhance 
the solubility of ions like Fe(III) and 
As(V) by reducing them to Fe(II) and 
As(III), respectively, and can facilitate 
leaching from soil.82,83 Studies have 
reported bacteria from different natural 
aquifers which can transform As.84-86 
Pokhrel and Viraraghavan employed 
Aspergillus niger to remove As(V) and 
As(III).87 Heavy metal biomethylation is 
an important process in soil and water 
and may modify toxicity, volatility, and 
mobility of heavy metals. It also serves 
as an important means of detoxification 
as volatile methylated species can be 
removed from cells.88 Dimethylmercury 
and alkyl arsines, the methylated 
products of Hg and As, respectively, 
are volatile and evaporate and are lost 
from soil. The organic matter fraction 
of soil serves as the methyl donor. Yet 
another indirect mechanism of metal 
mobilization involves the microbial 
decomposition of organic matter, 
which accelerates the release of these 
ions. Schizophyllum commune has 
been found to release heavy metals 

along with dissolved organic matter.89 
Excretion of metabolites like carboxylic 
acids and amino acids by microbes is 
an important mechanism of chelating 
metal ions.

Microbes perform metal 
immobilization and act as sinks 
for metals by adopting different 
mechanisms (ex- or in-situ) like 
biosorption, bioaccumulation, 
bioconversion and/or inter/intracellular 
precipitation (as oxalates of Zn, Cu, 
Co, Cd, Ni) operating in different 
ways.36,90,91 By immobilization, an 
element can be easily removed from 
its aqueous phase in groundwater or 
wastewater.36,92 Bacterial oxidation 
of As(III) to As(V) makes them 
immobilized and retained by the 
sediments.82,83 Methanothermobacter 
thermautotrophicus has been employed 
to reduce Cr(VI) to Cr(III) and 
immobilize it in hydroxide-/oxide- 
forms.93 Bacterial reduction and 
immobilization for Cr(VI) has also 
been reported for Bacillus cereus 
and Shewanella sp.94,95 Cellular 
structures like the cell wall and plasma 
membrane act as barriers and check 
the entry of metal ions into cells.96 
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Biosorption and bioaccumulation

Biosorption and bioaccumulation 
are attractive options to substitute 
conventional methods for heavy metal 
remediation. Bioaccumulation involves 
heavy metal uptake by living biomass 
(metabolism dependent/active uptake) 
and is characterized by the uptake 
of contaminants by living biomass/
cells. Employing living biomass for 
remediation may not be a viable 
option owing to highly toxic metals 
which can accumulate in cells and 
interrupt metabolic activities resulting 

in cell death. However, dead biomass 
(biosorption) remains unaffected by 
toxicity, does not require any growth/
nutritional medium and is flexible 
to environmental conditions. Heavy 
metals are adsorbed on the surface 
in a passive mode without involving 
energy expenditure (independent 
of metabolism) until equilibrium is 
achieved.97 Therefore, biosorption 
is advantageous, compared to active 
uptake/bioaccumulation, as it is 
metabolism independent, however is 
it largely dependent on the biomass/
biosorbent type and contaminants 

involved.98 For these advantages, 
microbial biomasses of fungi, algae 
or yeast have been utilized for 
bioremediation for in-situ processes. 
Heavy metal bioremediation in the 
form of metallic nanoparticles with 
the help of bacteria and the use of 
genetically modified microorganisms 
as a part of the bioremediation process 
have also been reported. 99-101 

Intracellular sequestration is the 
concentration of metal ions within 
the microbial cells. It involves 
complexation of heavy metal ions 
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due to surface interactions and their 
subsequent transport into the cell.96 
Extra-cellular sequestration comprises 
a concentration of metal ions in the 
periplasm or their complexation as 
insoluble precipitates. Cadmium 
precipitation has been reported in 
Pseudomonas aeruginosa and Klebsiella 
planticola.102,103 

Bacterial bioremediation 

Bacteria are ubiquitously present in 
the environment. Bacteria are found 
in different shapes, including rods 
(Bacillus), cocci (Streptococcus), 
filamentous (Actinomyces) and spiral 
(Vibrio cholera). Biosorption by 
bacteria is an inexpensive and efficient 
technique to remove pollutants, 
including non-biodegradable 
elements, like heavy metals, from 
wastewater. Bacterial biomass 
can be living or non-living cells. 
Bacterial species have adapted and 
developed mechanisms for metals 
ions resistance and remediation for 
their survival.104 Heavy metal ions 
bioremediation by bacterial agents 
has been widely researched.105-109 
Bacterial biomass accomplishes the 
rapid removal of metals such as Cu, 
Zn, Pb, Cd, and Cr.110 biosorption 
efficiency depends on heavy metal 
ions and bacterial species (owing 
to their different cellular structures 
in terms of peptidoglycans like 
N-acetylmuramic acid and poly-N-
acetylglucosamine).42 The bacterial cell 
wall is the primary physical contact 
linking metal ions and the bacterial 
biomass. The overall negative charge 
due to anionic functional groups (like 
amine, hydroxyl, carboxyl, sulphate, 
phosphate) present in Gram-positive 
bacteria (in peptidoglycan, teichoic 
acids, and teichuronic acids) and 
in Gram-negative bacteria (in 
peptidoglycan, lipopolysaccharides, 
and phospholipids) imparts metal-
binding capacity on or within the cell 
wall.111 The heavy metal removal by 

dead biomass cells is extracellular.  
Functional groups, including carboxyl, 
phosphonate, amine and hydroxyl 
groups on the cell wall are responsible 
for these interactions.112,113 

The carboxyl groups can bind Cd on 
the surface by complexation.114 The 
amino groups have displayed efficient 
removal of Cr by chelation and 
electrostatic interactions.115 Bacterial 
species need to be exposed to the 
contaminants for enzymatic induction 
before using them for bioremediation. 
There is a minimum requirement of 
contaminant concentration to initiate 
enzymatic expression necessary for the 
process.116 Species like Pseudomonas, 
Desulfovibrio, Bacillus, and Geobacter 
have been used for bioremediation 
(Table 4). 

Algal bioremediation 
(phycoremediation) 

Different species of algae are present in 
large amounts in marine ecosystems. 
Algae are autotrophic organisms, have 
low nutritional requirements and 
generate vast biomass.79 Among the 
three algal groups; i.e., Phaeophyta, 
Rhodophyta and Chlorophyta (i.e. 
brown, green and red, respectively), 
brown algae have been reported to 
possess better biosorption capacity 
(phycoremediation). Metal ion 
biosorption varies with the kind and 
structure of the algal biomass, charge 
and chemical constitution of the heavy 
metal ion.139,140 Different algae, in 
live or dead forms, have been used, 
as single or in combination, in batch 
or column, for in-situ remediation. 
The presence of amine, hydroxyl, 
carboxyl, sulphate, and phosphate 
are potential metal sites in algal 
proteins, which operate by complex 
formation methods during heavy 
metal remediation.79,141 Calcium, 
magnesium, and sodium ions present 
in the cell wall get replaced by heavy 
metal ions via ion exchange. Table 

5 depicts various types of algae as 
biosorbents.

Fungal bioremediation 
(mycoremediation)

Fungi are known for their pervasive 
presence in the natural environment 
and are exploited extensively in 
industrial applications.166 Fungi are 
adapted (in terms of their morphology, 
ecology and metabolism) according 
to environmental conditions and 
are responsible for processes like 
decomposition and nutrient cycling 
under natural conditions.167 They have 
been reported to withstand and survive 
under stress conditions of moisture, 
nutrients, pH, etc. Mycoremediation 
involves use of fungus (live or dead) 
for the removal of contaminants 
from different environmental 
segments.168,169 Mycoremediation 
is a cost-effective process and does 
not leave harmful waste products. 
Hence, it poses a complete solution 
because of the full mineralization 
of the pollutants in nature.170 The 
success of mycoremediation depends 
on the identification and usage of a 
suitable fungal species for the target 
heavy metal or other contaminants. 
Fungi have the ability to accumulate 
heavy metals in their fruit bodies in 
an efficient manner, making them 
unavailable or decreasing their 
concentration in the media.171 The 
future availability of heavy metals 
and other contaminants in the media 
depend upon the life of the fungi, 
chemical behavior of the elements 
and presence or absence of the fungi 
after sequestration. Saccharomyces 
cerevisiae has been reported to 
sequester up to 65–79% of Pb and 
Cd from polluted soil.172 The process 
of biosorption involves fungal cell 
walls (having chitin, proteins, glucans, 
lipids, pigments, polysaccharides) 
and functional groups like hydroxyl, 
carboxyl, amino, sulphate, or phosphate 
and is mediated through interactions 
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like adsorption, ion-exchange and 
complexation.173-175 Aspergillus sp. 
have been reported to remove Cr 
from tannery wastewater; it removed 
65% of the Cr from the wastewater as 
compared to 85% from the synthetic 
medium.176 

The phylum basidiomycetes includes 
wood-decaying species (white- and 
brown-rot fungi), mushrooms and 
other fungi.177 Mushrooms have 
played an important role in the 
human diet throughout history due 
to their nutritional and medicinal 
properties. Besides their use as food, 
they are used for mycoremediation 
due to their potential for heavy metal 
uptake. Metal uptake in mushrooms 
is affected by contact time, age of 
mycelia and fructification.178 Some 
edible wild varieties of mushrooms can 
accumulate heavy metals over their 
background concentrations.179 Heavy 
metals scatter disproportionately in the 
mushroom fruiting body.180,181 Different 
species of white-rot fungi, including 
Pleurotus ostreatus and Termitomyces 
clypeatus have been reported to degrade 
persistent pollutants (Table 6).181,182

Recommendations 

The unregulated discharge of industrial 
effluents in agricultural fields or water 
bodies increases their chances of 
entering the food chain through crops 
and aquatic animals and subsequent 
bioaccumulation. Various in-situ and 
ex-situ methods of bioremediation 
suitable to different environmental 
conditions have been investigated 
and recommended.204-207 The design, 
development, and application of these 
techniques require careful selection 
of biological agents. Extensive 
research is being carried out using 
specific strains of microorganisms 
for bioremediation. Microorganisms 
carry out redox reactions; and hence, 
impact the bioremediation processes 
by metal mobilization/immobilization. 

Manganese(II)-oxidizing Bacillus sp. 
strain indirectly oxidizes Cr(III) into 
the mobile and bioavailable form 
of Cr(VI) by producing oxidized 
Mn.208 The process of heavy metal 
bioremediation is more efficient using 
different microbial strains concurrently 
instead of only a single species.63 
Advances in genetic engineering and 
optimization techniques suggest that 
the future of these technologies is 
promising.209,210 Genetically modified 
microorganisms may have a better 
bioremediation potential for various 
contaminants.  In addition, the 
potential of agricultural and industrial 
waste biomass as bioremediators on 
a lab/commercial scale is currently 
being tested; e.g., sugarcane bagasse, 
coconut shell waste, rice husk, and 
beer waste yeast.211-214 The biosorption 
capacity of various biosorbents is 
improved after various physical and 
chemical modifications and further 
research is needed in order to use these 
biosorbents on a commercial scale 
across industries. The bioremediation 
approach requires a holistic and 
inclusive method for systematic, feasible 
and sustainable strategies which can 
be easily customized for each scenario. 
Moreover, there is an urgent need for 
coordination at all levels, including 
research organizations, the general 
public, governmental institutions, and 
industries.215 

Conclusions

Heavy metal pollution occurs from 
various anthropogenic and natural 
sources. Heavy metals, due to their 
non-biodegradable and hazardous 
nature, should be removed from the 
environment. Industrial wastewater 
discharged into environmental 
segments, such as soil and rivers, 
requires immediate intervention 
by governmental agencies, regular 
monitoring and remediation using 
appropriate methods. Conventional 
methods of treatment have limitations 

and should be replaced by efficient, 
cost-effective and eco-friendly 
techniques such as bioremediation 
employing biological agents. Adopting 
an appropriate biosorbent in terms 
of efficiency and economy is a major 
concern. Microorganisms carry out 
redox reactions; and hence, impact 
the bioremediation processes by 
metal mobilization/immobilization. 
Metal-microbe interaction influences 
microbial processes, such as their 
growth, colonization and microbial 
biofilm formation for remediation. 
Further research is needed translating 
these lab scale options into industrial 
applications (e.g. microbial films) 
considering factors such as appropriate 
and adapted microorganisms/
appropriate biomass waste and/or 
mixtures of different kinds of microbial 
biomass with conventional technologies 
and suitable conditions in ex- or in-situ 
environments.
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